

Mack Roach III, MD Professor Radiation Oncology and Urology, Department of Radiation Oncology UCSF Helen Diller Family Comprehensive Cancer Center Definitive Radiation + /- ADT for Locally Advanced Prostate Cancer: What is the Optimal Treatment?

APCCC Friday March 10th, 2017 ST GALLEN, SWITZERLAND

No relevant disclosures

Radical Prostatectomy vs Radiation and Androgen Deprivation Therapy for Clinically Localized Prostate Cancer: How Good is the Evidence?

International Journal of Radiation Oncology biology physics

Roach, Ceron-Liagarra, Lazar et al. IJROBP 93:1064-1070, 2015

Purpose: ... We analyzed the available literature, to determine whether reliable conclusions could be made concerning the effectiveness of RP vs RT +/- ADT, assuming current Tx standards. *Results: ...* 14 studies identified (one without CSS). Median RS=12 (< or = "low" & > "high") Studies with RS <12 10-yr OS & CSS Diff. 17% & 6%, respectively. ... RS >12 10-yr OS & CSS, Diff, 5.5% & ~1%, respectively. **Conclusions** ... The most reliable studies suggest that the differences in 10 year CSS between RP and RT ... < or = 1%.

Acta Oncologica, 2015; 54:875-881 ORIGINAL ARTICLE

Radical prostatectomy versus high-dose irradiation in localized/locally advanced prostate cancer: A Swedish multicenter randomized trial with patient-reported outcomes. Lennermas et al.

Figure 1. Cumulative probability of prostate-specific survival in RP, radical prostatectomy group compared to RT, radiotherapy group.

Level One Evidence for benefit of Brachytherapy Canadian ASCENDE-RT WJ Morris et al IJROBP 2016

- Phase 3: 78 Gy vs. 46 Gy + LDR Brachytherapy
- n=398: follow up 5-11 years
- High risk and high tier intermediate risk
- 1 year ADT (8 month neoadj + 4 month concurrent/adjuvant)

ASCENDE RT Trial published IJROBP 2016 slide Courtesy of Juanita Crook MD

Results: Biochemical PFS all patients

Intent-to-treat analysis of the primary endpoint

B-PFS using nadir + 2 vs. PSA > 0.2 ng/ml

ASCENDE RT Trial published IJROBP 2016 slide Courtesy of Juanita Crook MD

Status of WPRT for Prostate Cancer

- Why Important?:
 - Small field vs Big Field?
 - -PORT (e.g. CHHiP Trial) thru SBRT or HDR monotherapy
 - Potential Morbidity
 - Cost (time & money)?
 - Opportunity to improve outcomes!
- Why So Challenging?:
 - e.g. 1200 pts with 1/3rd (33%) having + nodes
 - ... then study really based on n=400 pts
 - ... if disease beyond pelvis in 25% down to n=300 pts
 - ... and local failures 1/3rd to n=200 pts
 - ... competing causes of death (e.g. 50%) n=100
 - ... "optimal size of trial to answer questions of WPRT?"

RTOG 0924: n=2580 "big enough?"

Is There a Role for Pelvic Irradiation in Localized Prostate Adenocarcinoma? Update of the Long-Term Survival Results of the GETUG-01 Randomized Study Pommier et al. IJROBP 96, 2016

Event-free survival (EFS) subset with risk of + nodes <15%

Patterns of Lymph Node Positivity on ¹¹C-acetate PET Imaging in Correlation to the RTOG Pelvic Radiation Field for Prostate Cancer. <u>McClinton et al. ASTRO 2015</u>

The Template of the Primary Lymphatic Landing Sites of the Prostate Should be Revisited: Results of a Multimodality Mapping Study. Mattei ... Studer. EAU 53:118-125, 2008

RTOG 9413 (UPDATED, 4-3-2016)

Progression-Free Survival Multivariate Analysis (Phoenix)

	Stratified	Variable			
Outcome	variables	categories	HR*	95% CI	p-value [†]
PFS (Phoenix)	Treatment	NHT+WPRT	RL		
		NHT+PORT	1.21	(1.02, 1.43)	0.027
		WPRT+AHT	1.21	(1.02, 1.43)	0.025
		PORT+AHT	0.93	(0.78,1.10)	0.39
-	Gleason	2-6	RL		
		7-10	1.27	(1.11,1.45)	0.0006
_	PSA	\leq 30	RL		
		> 30	1.43	(1.26,1.63)	< 0.0001
-	T-Stage	T1c,T2a	RL		
		T1b,T2b	0.96	(0.76,1.20)	0.71
		T2c-T4	1.05	(0.90,1.21)	0.54

*HR: hazard ratio, a risk ratio of 1 indicates no difference between subgroups.

[†] p-value is from Chi-square test using the Cox proportional hazards model

(Roach et al. unpublished data, 2017)

Basis of study design for RTOG 0924?

Table 12.6.4-Yr PFS: Intermediate Risk (PSA <30 and GS 7-10 excluding Clinical Stages</th>T2c-T4, or GS=6 with PSA <30, Gleason 2-6, and Clinical Stages T2c-T4, or PSA \geq 30 and GS2-6

4-11 Kait (70)
N [95% C.I.] P-Value*
25 68.1 [58, 78] 0.027
46.6 [36, 58]
13 53.8 [42, 65]
18 49.8 [39, 61]

P-value from log-rank test for comparing the survival curves.

RTOG 9413* Subset middle stratification risk + nodes > 15% by Roach equation: (1) PSA <50 ng/ml & GS 7-10, T1c-T2b, or (2) GS=2-6 with Clinical Stages T2c-T4 or > 50% biopsies + & PSA <50 ng/ml, or (3) GS=2-6, PSA > 20 ng/ml and T1c-T2b

Group	10 yr CSS				
PO (n=145)	0.8497	0.1503	0.0358	16	52
WPRT (n=146)	0.9741	0.0259	0.0150	3	40
	Diff=13%	Log-Rank	8.7735	1	0.0031

Max PSA < 100 ng/ml

RTOG 0924

Treatment Schema 1. Risk Group: "Favorable" High or "Unfavorable" Intermediate Risk: R R 1.GS=7-10 and T1c-T2b and PSA < 50 ng/ml or Е S Α Т 2.GS=6, T2c-T4 or > 50% biopsies + & PSA <50 or R G Ν Arm 1: NADT + Prostate & SV A Т Ι D 3.GS=6, PSA > 20 ng/ml and T1c-T2b Ι F 2. Type of RT Boost: S 0 VS Y IMRT vs Brachytherapy (HDR + PPI) Т Μ 3. Duration of Androgen Deprivation Therapy Е Ι Arm 2: NADT + Whole-Pelvic RT Short Term vs Long Term ADT R Z Е

Cumulative Accrual for RTOG 0924 - Data as of 10/31/2016

Major Take Home Message: RT+/-ADT

- 1. More high level evidence supporting RT+ADT for unfavorable prostate ca. (e.g. > 65 yrs) than for RP
- 2. Better PSA control rates with higher doses (particularly with brachytherapy e.g. ACENDE RT)
- 3. Progression Free Survival higher with NHT & WPRT than NHT and PORT (RTOG 9413)
- 4. RTOG (NRG) 0924 (n=2580) should allow the impact of prophlactic WPRT to be determined